

中华人民共和国机械行业标准

XX/T XXXXX—XXXX

机器人与视觉系统 TCP 通讯接口协议

Robot and vision system TCP communication interface protocol

(征求意见稿)

(本稿完成日期: 2018年6月)

- XX - XX 发布

XXXX-XX-XX 实施

前言

本标准按照 GB/T 1.1-2009 给出的规则起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本标准由中国机械工业联合会提出。

本标准由全国自动化系统与集成标准化技术委员会(SAC/TC159)归口。

本标准起草单位:。

本标准主要起草人:。

本标准为首次制定。

包装机器人与视觉系统 TCP 通讯接口协议

1 范围

本接口协议规定了包装机器人与视觉系统之间通信物理链路、建立连接、数据传输流程和报文格式、连接拆除等。

本标准适用于包装机器人与视觉系统之间的 TCP 通讯接口协议。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

IEEE802.3 以太网介质访问控制协议(CSMA/CD)与物理层技术规范

3 术语和定义

下列术语和定义适用于本文件。

3. 1

包装机器人 packaging robot

进行物料充填或灌装、贴标、装箱、打包、码垛、分拣、装配等包装作业的工业机器人。

3. 2

视觉系统 vision system

视觉传感器及其计算机处理系统。

3.3

服务器端站和客户端站 server station and client station

本接口协议采用 TCP 传输数据,通信双方分别作为 C/S 架构服务器端和客户端,充当服务器端的站称为服务器端站,充当客户端的站称为客户端站。

3.4

命令触发 command trigger

当接收到命令时,执行既定动作。

3.5

周期触发 periodical trigger

按照固定的时间周期执行既定动作。

3. 6

字节 byte

计算机信息技术用于计量存储容量的一种计量单位,通常情况下一字节等于有八位。也表示一些计算机编程语言中的数据类型和语言字符。

3. 7

帧 frame

机器人和视觉系统通信中的基本数据单位,有帧头、帧种类、帧长度、数据、校验、帧尾等信息。 3.8

数据帧 data frame

视觉系统向机器人发送包含视觉系统运算产生的数据的帧。

3. 9

定位数据帧 location data frame

视觉系统测量得出产品坐标和角度的数据帧。

3. 10

检测数据帧 testing data frame

视觉系统对产品检测结果的数据帧。

3. 11

导航数据帧 navigation data frame

视觉系统运算得出用于引导机器人运动的数据帧。

3. 12

触发命令帧 trigger command frame

机器人向视觉系统发送用于请求进行视觉图像运算命令帧。

3. 13

心跳帧 heartbeat frame

机器人和视觉系统向对方发送用于表明自身系统正常运行的帧。

3. 14

缩略语

下列缩略语适用于本文件。

Head 表示帧头

Length 表示帧长度

Fram Index 帧序号

Fram Type 帧类型

PosIndex 位置序号

ItemNum 条目数量

XPos X 坐标

YPos Y 坐标

ZPos Z 坐标

Product Type 产品类型

Angle 产品角度

CS 校验和

End 帧尾

4 一般技术要求

本接口协议物理层和数据链路层采用 IEEE802.3 标准, 传输媒介宜采用超 5 类屏蔽双绞线。

本接口协议采用可变长度数据帧、命令帧、自定义帧三种帧格式。视觉触发方式分为命令触发和周期触发。机器人可以根据需要设置视觉系统的触发方式和周期。

5 通信初始化过程及链接维护

本接口协议使用以太网 TCP 传输方式,C/S 架构,为了机器人根据视觉数据做出相应响应动作,机器人系统作为 TCP 通信的客户端站,视觉系统作为 TCP 通信的服务器端站。服务器端套接字宜缺省绑定 6000 端口号,客户端使用的端口号不限定。

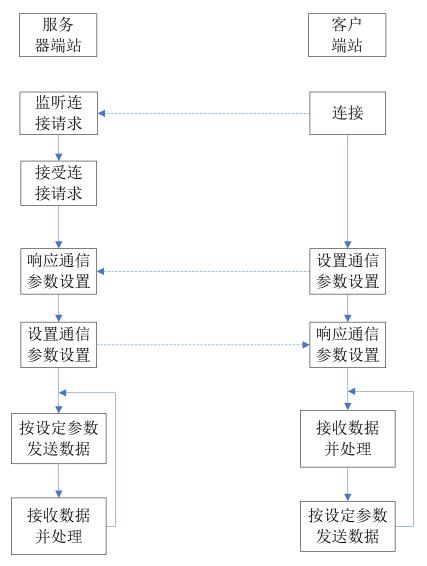


图 1 通信初始化流程图

通信初始化时,客户端站主动发起连接请求,服务器端站在收到连接请求后,接受连接请求,并将 所有数据向客户端站发送一遍。客户端站此时可以根据服务器端站发送的数据建立数据库,并初始化通 信点值。接着,客户端站可以根据自身需要设定数据触发方式、通信周期、是否发送心跳报文等。通信 初始化流程如图 1 所示。

建立通信链路后,服务器端站按客户端站要求,实时向客户端站发送数据。如果使用心跳报文,客户端站连续 3 个心跳周期未向服务器端站发送任何帧时,应向服务器端站发送一个心跳帧。未收到心跳帧的回传信号,服务器端站应做报警提示。通信过程中,客户端站和服务器端站可以修改数据触发方式、通信周期、是否发送心跳报文。对于只需要接收数据的客户端站或服务器端站,可以不发送数据,只需周期接收对站的数据和向对方站发送心跳报文维持链路。

当通信中断后,客户端站和服务器端站都关闭连接。服务器端站等待客户端站发起连接请求,重新建立连接后,按通信初始化过程进行相应初始化。

6 帧

6.1 帧结构

帧结构如表 1、表 2、表 3 所示。数据帧分为定位数据帧、检测数据帧及导航数据帧。命令帧分为触发命令帧和心跳帧。无论数据帧、命令帧还是自定义帧都包含 Head、Fram Type、Length、Fram Index、PosIndex、CS、End。数据帧还包含 ItemNum、Product Type、XPos、YPos、ZPos、Angle,命令帧还包括 Option 和 Data,自定义帧还包括 Data。

表 1 数据帧

Head	Fram Type	Length	Fram Index	Pos Index	Item Num	Product Type	X Pos	Y Pos	Z Pos	Angle α	Angle β	Angle γ		CS	End
0X	1	2	2	1	2	2	8	8	8	8	8	8		1	0X
68	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	字节	•••	字节	16

表 2 命令帧

Head	Fram Type	Length	Fram Index	PosIndex	Option	Data	CS	End
0X68	1字节	2 字节	2 字节	1字节	1 字节	8 字节	1 字节	0X16

表 3 自定义帧

Head	Fram Type	Length	Fram Index	PosIndex	Data	CS	End
0X68	1字节	2 字节	2 字节	1 字节	0至 65526 字节	1字节	0X16

6.2 字节顺序

对于多字节(两字节及两字节以上)所有数据均采用 Intel 数据存取方式(小端字节序),便于数据组帧和拆帧。例如十进制无符号短整数据 15,占两字节,低字节十六进制为 0X0F,高字节为 0X00,在发送缓冲区中 0X0F 在前(低地址),0X00 在后(高地址),即 0F00。

6. 3 Head

Head 表示帧头,固定为 0X68,占一个字节,用于标识一帧开始。

6. 4 Fram Type

用于表示本帧的功能, Fram Type 的数据类型为 Byte, 占 1 字节。

表 4 帧类型

Fram Type 值	含义
0	定位数据帧
1	检测数据帧
2	导航数据帧
3	触发命令帧
4	心跳帧
5	自定义帧

6.5 Length

Length 表示帧长度,指从 Fram Index 开始到 End 字节数, Length 为无符号短整数,占两字节。

6. 6 Fram Index

Fram Index 表示帧序号,为无符号短整数,占两字节。Fram Index 初始为 0,每发送一个非应答帧,Fram Index 累加 1,累加到 65535 后重新从 0 开始。发送应答帧时,应答帧的 Fram Index 必须与请求帧一致,表示此帧应答帧序号为 Fram Index 的请求帧。

6. 7 PosIndex

PosIndex表示本帧发送的产品数据是在第几个工位识别的,为Byte类型,占一个字节。

6.8 ItemNum

ItemNum 表示本帧发送产品数据条目数,为 Word,占 2 字节。

6. 9 Product Type

Product Type 表示该产品类型,为 Word,占 2 字节,一帧可以发送多个不同类型的产品数据。

6. 10 XPos

XPos 表示 X 轴坐标,用 8 个字节双精度实数表示。

6. 11 YPos

YPos 表示 Y 轴坐标,用 8 个字节双精度实数表示。

6. 12 ZPos

ZPos表示Z轴坐标,用8个字节双精度实数表示。

6. 13 Angle α

Angle α表示在 XY 平面上产品角度,用 8个字节双精度实数表示。

6. 14 Angle β

Angle β表示在 XZ 平面上产品角度,用 8 个字节双精度实数表示。

6. 15 Angle γ

Angle γ表示在 YZ 平面上产品角度,用 8个字节双精度实数表示。

6. 16 Option

Option 表示本命令帧设置选项,命令帧可设定触发方式、周期、是否发送心跳报文、心跳周期,Option 数据类型为 Byte,占 1 字节。

Option 为 0X00 表示设置触发方式; Option 为 0XF0 表示应答设置传送方式结果。Data 为 0 时为周期触发,Data 为 1 时命令上送,Data 为 2 时外部触发,默认方式为外部触发上送。

Option 为 0X01 时,设定周期触发的时间间隔; Option 为 0XF1 时,Data 为触发周期(单位: ms)。Option 为 0X02 时,设定是发送心跳报文; Option 为 0XF2 时,应答设定对时结果。Data 为 0 表示

不发送心跳报文, Data 为 1 表示发送心跳报文, 默认为不发心跳报文。

Option 为 0X03 时,表示设定心跳周期; Option 为 0XF3 时,表示应答后设定心跳周期。Data 为心跳周期(单位: ms)。

6. 17 CS

CS 表示校验和,从 Fram Type 开始到 Data(包含 Data)按字节模 256 求和。数据类型为 Byte,占 1 字节。

7 帧功能说明

本接口协议采用三种结构帧:数据帧、命令帧及自定义帧。数据帧长度可变,最大长度不能超过65535个字节,用于发送数据。命令帧长度也可变,帧长度相对数据帧较短,用于发送设置数据传输参数。

7.1 数据帧

通过向视觉系统发送请求命令、视觉系统周期上送、外部信号触发三种方式,视觉系统向机器人传输数据帧。

数据帧 Fram Type 可以取值 0、1、2,分别表示定位数据帧、检测数据帧、导航数据帧。下面的帧为一个定位数据帧,产品的 X 坐标为 1,Y 坐标为 2,Z 坐标为 3, α 角度为 4, β 角度为 5, γ 角度为 6。一个产品需要多个工位检测时 PosIndex 表示当前数据是第几个检测工位,PosIndex 取值从 0 开始。

Hand	Head Fram	Fram Length Fram Pos Item	Product	XPos	YPos	ZPos	Angle	Angle	Angle	CS	End			
пеац	Type	Lengui	Index	Index	Num	Type	AFUS	1108	ZFOS	α	β	γ	CS	Elia
							0X3f	0X40	0X40	0X40	0X41	0X42		
							0Xf0	0X00	0X08	0X10	0X14	0X18		
							0X00	0X00	0X00	0X00	0X00	0X00		
0X68	0X00	0X39	0X00	03700	0X00	0X00	0X00	0X00	0X00	0X00	0X00	0X00	0X09	0X16
UAGO	UAUU	UA39	0X00	0X00	0X01	0X01	0X00	0X00	0X00	0X00	0X00	0X00	0.009	UATO
							0X00	0X00	0X00	0X00	0X00	0X00		
							0X00	0X00	0X00	0X00	0X00	0X00		
							0X00	0X00	0X00	0X00	0X00	0X00		

表 5 数据帧

7.2 命令帧

7.2.1 触发方式命令帧

Option 为 0X00 表示设置触发方式; Option 为 0XF0 表示应答设置传送方式结果。Data 为 0 时为周期触发,Data 为 1 时命令上送,Data 为 2 时外部触发,默认方式为外部触发上送。一个产品需要多个工位检测时 PosIndex 表示当前数据是第几个检测工位,PosIndex 取值从 0 开始。

				7,3-2,73-0	1 4 10 1			
Head	Fram Type	Length	Fram Index	PosIndex	Option	Data	CS	End
						0X00		
				0X00	0X00	0X00	0X03	0X16
						0X00		
0X68	0X03	0X0E 0X00	0X00			0X00		
UAUS	0.003		0X00			0X00		
						0X00		
						0X00		
						0X00		

表 6 触发方式命令帧

7.2.2 周期触发的时间间隔命令帧

Option 为 0X01 时,设定周期触发的时间间隔; Option 为 0XF1 时,Data 为触发周期(单位: ms)。 举例如表 7 所示。

Head	FramType	Length	FramIndex	PosIndex	Option	Data	CS	End
Head 0X68	FramType 0X03	OX0E 0X00	FramIndex 0X00 0X00	PosIndex 0X00	Option 0X01	Data 0X00 0X00 0X07 0XD0 0X00 0X00 0X00 0X00 0X00 0X00	CS 0XDB	End 0X16
						0X00		

表 7 触发周期命令帧

7.2.3 心跳帧

Option 为 0X02 时,设定是发送心跳报文;Option 为 0XF2 时,应答设定对时结果。Data 为 0 表示不发送心跳报文,Data 为 1 表示发送心跳报文,默认为不发心跳报文。举例如表 8 所示。

Head	Fram Type	Length	Fram Index	PosIndex	Option	Data	CS	End
0X68	0X03	0X0E 0X00	0X00 0X00	0X00	0X02	0X01 0X00 0X00 0X00 0X00 0X00 0X00 0X00	0X06	0X16

表 8 心跳帧

7.2.4 心跳周期命令帧

Option 为 0X03 时,表示设定心跳周期; Option 为 0XF3 时,表示应答后设定心跳周期。Data 为心跳周期(单位: ms)。举例如表 9 所示。

Head FramType FramIndex PosIndex Option CS Length Data End 0X00 0X00 0X17 0X00 0X0E 0X70 0X68 0X03 0X03 0X16 0X000X8D 0X000X00 0X00 0X000X000X00

表 9 心跳周期命令帧

7.2.5 扩展命令帧

扩展命令帧同其它命令帧结构相同,Option为0X00、0X01、0X02、0X03以外值,Data取值范围和含义由机器人与视觉系统双方协商。

7.3 自定义帧

自定义帧Data字节长度可以0至65526,每个字节取值含义由<mark>机器人与视觉系统</mark>双方协商,其它字段含义与数据帧、命令帧相同。

PosIndex CS Head Fram Type Length Fram Index Data End 1 字节 2 字节 1 字节 0至 65526 字节 1字节 0X68 2 字节 0X16

表10 自定义帧